Reliability of a Wearable Motion Tracking System for the Clinical Evaluation of a Dynamic Cervical Spine Function

Author:

Hani Hamed12ORCID,Souchereau Reid12,Kachlan Anas2,Dufour Jonathan12,Aurand Alexander12,Mageswaran Prasath12ORCID,Hyer Madison3,Marras William12

Affiliation:

1. Spine Research Institute, The Ohio State University, Columbus, OH 43210, USA

2. Department of Integrated Systems Engineering, The Ohio State University, Columbus, OH 43210, USA

3. Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA

Abstract

Neck pain is a common cause of disability worldwide. Lack of objective tools to quantify an individual’s functional disability results in the widespread use of subjective assessments to measure the limitations in spine function and the response to interventions. This study assessed the reliability of the quantifying neck function using a wearable cervical motion tracking system. Three novice raters recorded the neck motion assessments on 20 volunteers using the device. Kinematic features from the signals in all three anatomical planes were extracted and used as inputs to repeated measures and mixed-effects regression models to calculate the intraclass correlation coefficients (ICCs). Cervical spine-specific kinematic features indicated good and excellent inter-rater and intra-rater reliability for the most part. For intra-rater reliability, the ICC values varied from 0.85 to 0.95, and for inter-rater reliability, they ranged from 0.7 to 0.89. Overall, velocity measures proved to be more reliable compared to other kinematic features. This technique is a trustworthy tool for evaluating neck function objectively. This study showed the potential for cervical spine-specific kinematic measurements to deliver repeatable and reliable metrics to evaluate clinical performance at any time points.

Funder

National Center for Advancing Translational Sciences of the National Institutes of Health

Department of Defense

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3