Outlier Vehicle Trajectory Detection Using Deep Autoencoders in Santiago, Chile

Author:

Peralta Billy1ORCID,Soria Richard1,Nicolis Orietta1ORCID,Ruggeri Fabrizio2ORCID,Caro Luis3ORCID,Bronfman Andrés1

Affiliation:

1. Facultad de Ingeniería, Universidad Andres Bello, Av. Antonio Varas 880, Santiago 7500971, Chile

2. Institute of Applied Mathematics and Information Technologies, National Research Council (IMATI-CNR), 20133 Milano, Italy

3. Departamento de Ingeniería Informática, Universidad Católica de Temuco, Temuco 4781312, Chile

Abstract

In the last decade, a large amount of data from vehicle location sensors has been generated due to the massification of GPS systems to track them. This is because these sensors usually include multiple variables such as position, speed, angular position of the vehicle, etc., and, furthermore, they are also usually recorded in very short time intervals. On the other hand, routes are often generated so that they do not correspond to reality, due to artifacts such as buildings, bridges, or sensor failures and where, due to the large amount of data, visual analysis of human expert is unable to detect genuinely anomalous routes. The presence of such abnormalities can lead to faulty sensors being detected which may allow sensor replacement to reliably track the vehicle. However, given the reliability of the available sensors, there are very few examples of such anomalies, which can make it difficult to apply supervised learning techniques. In this work we propose the use of unsupervised deep neural network models based on stacked autoencoders to detect anomalous routes in vehicles within Santiago de Chile. The results show that the proposed model is capable of effectively detecting anomalous paths in real data considering validation given by an expert user, reaching a performance of 82.1% on average. As future work, we propose to incorporate the use of Long Short-Term Memory (LSTM) and attention-based networks in order to improve the detection of anomalous trajectories.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference38 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3