In Situ Thermal Ablation Repair of Delamination in Carbon Fiber-Reinforced Thermosetting Composites

Author:

Cang Yu,Hu Wenlong,Zhu Dalei,Yang Lulu,Hu Chaojie,Yuan Yiwen,Wang Fangxin,Yang Bin

Abstract

Repairing delamination damage is critical to guarantee the structural safety of carbon fiber-reinforced thermosetting composites. The popular repair approaches, scarf repair and injection repair, can significantly restore the in-plane mechanical performance. However, the out-of-plane properties become worse due to the sacrifice of fiber continuity in these repairing processes, leading to the materials being susceptible under service loads. Here, we propose a novel in situ delamination repair approach of controllable thermal ablation in damage removal, achieving a high repair efficiency without impairing the fiber continuity in carbon fiber/epoxy panels. The epoxy resin in the delaminated region was eliminated under the carbonization temperature in a few minutes, allowing the carbon fiber frame to retain its structural integrity. The healing agent, refilled in the damaged region, was cured by the Joule heating of designed electrodes for 30 min at 80 °C, yielding the whole repair process to be accomplished within one hour. For the delaminated carbon fiber/epoxy panels with thicknesses from 2.5 to 6.8 mm, the in-plane compression-after-impact strength after repair could recover to 90.5% of the pristine one, and still retain 74.9% after three successive repair cycles of the 6.8 mm-thick sample. The simplicity and cost-saving advantages of this repair method offer great potential for practical applications of prolonging the service life of carbon fiber-reinforced thermosetting composites.

Funder

National Natural Science Foundation of China

Shanghai Rising-Star Program

Shanghai Pujiang Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3