Investigation into the Aerodynamic Performance of a Vertical Axis Wind Turbine with Endplate Design

Author:

Ung Shern-Khai,Chong Wen-TongORCID,Mat Shabudin,Ng Jo-Han,Kok Yin-Hui,Wong Kok-HoeORCID

Abstract

For the past decade, research on vertical axis wind turbines (VAWTs) has garnered immense interest due to their omnidirectional characteristic, especially the lift-type VAWT. The H-rotor Darrieus VAWT operates based on the lift generated by aerofoil blades and typically possesses higher efficiency than the drag-type Savonius VAWT. However, the open-ended blades generate tip loss effects that reduce the power output. Wingtip devices such as winglets and endplates are commonly used in aerofoil design to increase performance by reducing tip losses. In this study, a CFD simulation is conducted using the sliding mesh method and the k-ω SST turbulence model on a two-bladed NACA0018 VAWT. The aerodynamic performance of a VAWT with offset, symmetric V, asymmetric and triangular endplates are presented and compared against the baseline turbine. The simulation was first validated with the wind tunnel experimental data published in the literature. The simulation showed that the endplates reduced the swirling vortex and improved the pressure distribution along the blade span, especially at the blade tip. The relationship between TSR regimes and the tip loss effect is also reported in the paper. Increasing VAWT performance by using endplates to minimise tip loss is a simple yet effective solution. However, the improvement of the power coefficient is not remarkable as the power degradation only involves a small section of the blades.

Funder

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3