Abstract
Lithium-Sulfur is a promising technology for the next generation of batteries and research efforts for early-stage prototype implementation increased in recent years. For the development of a suitable Battery Management System, a state estimator is required; however, lithium-sulfur behavior presents a large non-observable region that may difficult the convergence of the state estimation algorithm leading to large errors or even instability. A dual Extended Kalman Filter is proposed to circumvent the non-observability region. This objective is achieved by combining a parameter estimation algorithm with a cell model that includes non-linear behavior such as self-discharge and cell degradation. The resulting dual Kalman filter is applied to lithium–sulfur batteries to estimate their State-of-Charge incorporating the effects of degradation, temperature, and self-discharge deviations.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献