Study on Harmonic Impedance Estimation Based on Gaussian Mixture Regression Using Railway Power Supply Loads

Author:

Xia YankunORCID,Tang WenzhangORCID

Abstract

There are a huge number of harmonics in the railway power supply system. Accurately estimating the harmonic impedance of the system is the key to evaluating the harmonic emission level of the power supply system. A harmonic impedance estimation method is proposed in this paper, which takes the Gaussian mixture regression (GMR) as the main idea, and is dedicated to calculating the harmonic impedance when the load changes or the background harmonic changes in the traction power supply system. First, the harmonic voltages and currents are measured at the point of common coupling (PCC); secondly, a Gaussian mixture model (GMM) is established and optimized parameters are obtained through the EM algorithm; finally, a Gaussian mixture regression is performed to obtain the utility side harmonic impedance. In the simulation study, different harmonic impedance estimation models with uniform distribution and Gaussian distribution are established, respectively, and the harmonic impedance changes caused by different system structures in the railway power supply system are simulated. At the same time, the error is compared with the existing method to judge the accuracy and robustness of this method. In the case analysis, the average value, average error, standard deviation and other indicators are used to evaluate this method. Among them, the average error and standard deviation of this method are about one-fifth to one-third of those of the binary linear regression (BLR) method and the independent random vector (IRV) method. At the same time, its index is slightly better than that of the support vector machine (SVM) method.

Funder

Southwest Jiaotong University

Xihua University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3