Author:
Li Zengqin,Zhang Weifeng,Zhuang Zhiyuan,Jin Tao
Abstract
Synchrophasor estimation was mostly used in transmission systems in the past, and it is difficult to directly apply an existing synchrophasor algorithm to a distribution system with a more complex structure and environment. A synchrophasor estimation algorithm with a high accuracy and fast response speed is required to complete the calculation of the phasor in the face of the complex and changeable power signal of a distribution network. Therefore, an enhanced all-phase discrete Fourier transform (e-apDFT) algorithm is proposed for a distribution system in this paper, and the algorithm is deployed in a phasor measurement unit (PMU) prototype based on digital signal processing (DSP). Aiming to solve the problem of the accuracy of the traditional apDFT being reduced when the response speed is fast due to the influence of a dense spectrum, the existing algorithm is improved through iteratively compensating the spectral interferences to the main bin produced by adjacent bins. The experimental results show that the e-apDFT algorithm still has a fast response speed and that its estimation accuracy is much better than that of the traditional apDFTs in the presence of adjacent harmonic components. The proposed algorithm also complies with the IEEE standards for P-class PMUs.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献