Abstract
The reduced requirement for nutrients in vertical farming (VF) implies that the potential for lower environmental impact is greater in VF than in conventional farming. In this study, the environmental impacts of VF were evaluated based on a case study of VF for vegetables in Miyagi Prefecture in Japan, where VF has been utilized in post-disaster relief operations in the wake of the 2011 Great East Japan Earthquake. The nitrogen (N) and phosphorus (P) footprints of these VFs were determined and analyzed to quantify the potential reduction in N and P emissions. First, the N and P footprints in conventional farming were calculated. Then, those footprints were compared with three different scenarios with different ratios for food imports, which equate to different levels of food self-sufficiency. The results show a decrease in the N and P footprints with increased prefectural self-sufficiency due to the introduction of VF. In addition to reducing the risks to food supply by reducing the dependence on imports and the environmental impacts of agriculture, further analysis reveals that VF is suitable for use in many scenarios around the world to reliably provide food to local communities. Its low vulnerability to natural disasters makes VF well suited to places most at risk from climate change anomalies.
Funder
Japan Society for the Promotion of Science
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献