Abstract
The acid mud produced in the nonferrous smelting process is a hazardous waste, which mainly consists of elements Hg, Se, and Pb. Valuable metal (Hg/Se/Pb) can be recovered from acid mud by heat treatment. For safe disposal of the toxic acid mud, a new resource utilization technology by microwave roasting is proposed in this paper. The reaction mechanisms were revealed through thermodynamics and thermogravimetric analysis, which showed that the main reaction was the oxidative pyrolysis of HgSe in the process of roasting. Moreover, the mercury removal effects of acid mud by microwave heating and conventional heating were studied, the recovery rate of mercury by microwave heating for 30 min at 400 °C was 99.5%: far higher than that of conventional heating for 30 min at 500 °C (44.3%). This was due to the high dielectric constant of HgSe, as microwaves can preferentially heat HgSe and reduce the adsorption energy of HgSe on the surface of PbSO4 blocks, thus strengthening the pyrolysis process of HgSe and reducing energy consumption. The preferable prototyping technology for resource utilization of toxic acid mud should be microwave roasting. This study is of great significance for the realization of mercury pollution reduction and for green production of lead-zinc smelting.
Funder
Key Technology and Demonstration of Field-Oriented Decontamination and Reuse of Sour Acid/Sludge
Subject
General Materials Science,Metals and Alloys
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献