Influence of Basicity and Calcium-Containing Substances on the Consolidation Mechanism of Fluxed Iron Ore Pellets

Author:

Liu Kuo,Chen FengORCID,Guo Yufeng,Liu Yajing,Wang ShuaiORCID,Yang Lingzhi

Abstract

The application of fluxed pellets in iron making industry has attracted considerable attention because of the better metallurgical properties than acid pellets and environmental friendliness compared to sinters. However, fluxed pellets with different binary basicity (CaO/SiO2) exhibited significant differences in phase composition, microstructure and consolidation mechanism. These differences mainly stemmed from the influence of calcium-containing substances in fluxed pellets. Herein, the theoretical investigation discovered the calcium-containing substances from fluxed pellets, including calcium iron silicate, calcium silicate and complex calcium ferrite (SFCA), which determined the properties of fluxed pellets. Microstructure analysis revealed that the calcium-containing substances filled between hematite particles were used as a binding phase to assist in pellets’ consolidation. Furthermore, the calcium-containing binding phase formed in the low-basicity (0.4–1.0) pellets was mainly composed of the calcium iron silicate glassy phase, while the binding phase of the high-basicity (1.0–1.2) pellets was dominated by SFCA belonging to SiO2-Fe2O3-CaO-Al2O3 multivariate system. In comparison, SFCA exhibited better crystallinity and reducibility than calcium iron silicate. Within the roasting temperature range of 1200–1250 °C, the increase of basicity contributed to the fluxed pellets obtaining better strength. To sum up, fluxed pellets with SFCA as the main calcium-containing binding phase can be obtained by increasing the basicity above 1.0–1.2, which was imperative for further improving the physical and metallurgical properties of fluxed pellets.

Funder

the National Natural Science Foundation of China

Shanxi Province Major Science and Technology projects

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3