Statistical Connections between Large-Scale Climate Indices and Observed Mean and Extreme Temperatures in the US from 1948 to 2018

Author:

Giovannettone Jason1ORCID

Affiliation:

1. Sisters of Mercy of the Americas, Inc., Silver Spring, MD 20910, USA

Abstract

In order to better understand the extent to which global climate variability is linked to the frequency and intensity of heat waves and overall changes in temperature throughout the United States (US), correlations between long-term monthly mean, minimum, and maximum temperatures throughout the contiguous US on the one hand and low-frequency variability of multiple climate indices (CIs) on the other hand are analyzed for the period from 1948 to 2018. The Pearson’s correlation coefficient is used to assess correlation strength, while leave-one-out cross-validation and a bootstrapping technique (p-value) are used to address potential serial and spurious correlations and assess the significance of each correlation. Three parameters defined the sliding windows over which surface temperature and CI values were averaged: window size, lag time between the temperature and CI windows, and the beginning month of the temperature window. A 60-month sliding window size and 0 lag time resulted in the highest correlations overall; beginning months were optimized on an individual site basis. High (r ≥ 0.60) and significant (p-value ≤ 0.05) correlations were identified. The Western Hemisphere Warm Pool (WHWP) and El Niño/Southern Oscillation (ENSO) exhibited the strongest links to temperatures in the western US, tropical Atlantic sea surface temperatures to temperatures in the central US, the WHWP to temperatures throughout much of the eastern US, and atmospheric patterns over the northern Atlantic to temperatures in the Northeast and Southeast. The final results were compared to results from previous studies focused on precipitation and coastal sea levels. Regional consistency was found regarding links between the northern Atlantic and overall weather and coastal sea levels in the Northeast and Southeast as well as on weather in the upper Midwest. Though the MJO and WHWP revealed dominant links with precipitation and temperature, respectively, throughout the West, ENSO revealed consistent links to sea levels and surface temperatures along the West Coast. These results help to focus future research on specific mechanisms of large-scale climate variability linked to US regional climate variability and prediction potential.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous)

Reference44 articles.

1. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

2. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

3. A review on the scientific understanding of heatwaves—Their measurement, driving mechanisms, and changes at the global scale;Perkins;Atmos. Res.,2015

4. California heat waves in the present and future;Gershunov;Geophys. Res. Lett.,2012

5. Spatiotemporal Evolution of Heat Wave Severity and Coverage Across the United States;Keellings;Geophys. Res. Lett.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3