Abstract
The development of new measures and algorithms to quantify the entropy or related concepts of a data series is a continuous effort that has brought many innovations in this regard in recent years. The ultimate goal is usually to find new methods with a higher discriminating power, more efficient, more robust to noise and artifacts, less dependent on parameters or configurations, or any other possibly desirable feature. Among all these methods, Permutation Entropy (PE) is a complexity estimator for a time series that stands out due to its many strengths, with very few weaknesses. One of these weaknesses is the PE’s disregarding of time series amplitude information. Some PE algorithm modifications have been proposed in order to introduce such information into the calculations. We propose in this paper a new method, Slope Entropy (SlopEn), that also addresses this flaw but in a different way, keeping the symbolic representation of subsequences using a novel encoding method based on the slope generated by two consecutive data samples. By means of a thorough and extensive set of comparative experiments with PE and Sample Entropy (SampEn), we demonstrate that SlopEn is a very promising method with clearly a better time series classification performance than those previous methods.
Subject
General Physics and Astronomy
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献