Numerical Simulation on Hydraulic Characteristics of Nozzle in Waterjet Propulsion System

Author:

Wang Chuan,He Xiaoke,Cheng Li,Luo Can,Xu Jing,Chen Kun,Jiao Weixuan

Abstract

As an important over-current component of the waterjet propulsion system, the main function of a nozzle is to transform the mechanical energy of the propulsion pump into the kinetic energy of the water and eject the water flow to obtain thrust. In this study, the nozzle with different geometry and parameters was simulated based on computational fluid dynamics simulation and experiment. Numerical results show a good agreement with experimental results. The results show that the nozzle with a circular shape outlet shrinks evenly. Under the designed flow rate condition, the velocity uniformity of the circular nozzle is 0.26% and 0.34% higher than that of the elliptical nozzle and the rounded rectangle nozzle, respectively. The pump efficiency of the circular nozzle is 0.31% and 0.14% higher than that of the others. The pressure recovery and hydraulic loss of the circular nozzle are superior. The hydraulic characteristics of the propulsion pump and waterjet propulsion system are optimal when the nozzle area is 30% times the outlet area of the inlet duct. Thus, the shaft power, head, thrust, and system efficiency of the propulsion pump and waterjet propulsion system are maximized. The system efficiency curve decreases rapidly when the outlet area exceeds 30% times the outlet area of the inlet duct. The transition curve forms greatly affect thrust and system efficiency. The transition of the linear contraction shows improved uniformity, and the hydraulic loss is reduced. Furthermore, the hydraulic performance of the nozzle with a linear contraction transition is better than that of others.

Funder

National Natural Science Foundation of China

Six Talent Peaks Project in Jiangsu Province

Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Province Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3