Hydrothermal Synthesis of TiO2 Aggregates and Their Application as Negative Electrodes for Lithium-Ion Batteries: The Conflicting Effects of Specific Surface and Pore Size

Author:

Mehraz Saida,Luo Wenpo,Swiatowska Jolanta,Bezzazi Boudjema,Taleb AbdelhafedORCID

Abstract

TiO2 aggregates of controlled size have been successfully prepared by hydrothermal synthesis using TiO2 nanoparticles of different sizes as a building unit. In this work, different techniques were used to characterize the as-prepared TiO2 aggregates, e.g., X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer, Emmett and Teller technique (BET), field emission gun scanning electron microscopy (FEGSEM), electrochemical measurements etc. The size of prepared TiO2 aggregates varied from 10–100 nm, and their pore size from around 5–12 nm; this size has been shown to depend on synthesis temperature. The mechanism of the aggregate formations was discussed in terms of efficiency of collision and coalescence processes. These newly synthetized TiO2 aggregates have been investigated as potential negative insertion electrode materials for lithium-ion batteries. The influence of specific surface areas and pore sizes on the improved capacity was discussed—and conflicting effects pointed out.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3