Abstract
Our aims were to evaluate the feasibility of a framework based on micro-sensor technology for in-field analyses of performance and sub-technique selection in Para cross-country (XC) skiing by using it to compare these parameters between elite standing Para (two men; one woman) and able-bodied (AB) (three men; four women) XC skiers during a classical skiing race. The data from a global navigation satellite system and inertial measurement unit were integrated to compare time loss and selected sub-techniques as a function of speed. Compared to male/female AB skiers, male/female Para skiers displayed 19/14% slower average speed with the largest time loss (65 ± 36/35 ± 6 s/lap) found in uphill terrain. Female Para/AB skiers utilized DP, DK, and DIA, 61/43%, 15/10%, and 25/47% of the distance at low speeds, respectively, while the corresponding numbers for male Para/AB skiers were 58/18%, 1/13%, and 40/69%. At higher speeds, female Para/AB skiers utilized DP and OTHER, 26/52% and 74/48% of the distance, respectively, while corresponding numbers for male Para/AB skiers were 29/66% and 71/34%. This indicates different speed thresholds of the classical sub-techniques for Para than AB skiers. The framework provides a point of departure for large-scale international investigations of performance and related factors in Para XC skiing.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference29 articles.
1. Explanatory Guide to Paralympic Classification—Paralympic Winter Sports,2016
2. The International Paralympic Committee, World Para Snow Sportshttps://www.paralympic.org/nordic-skiing/about
3. World Para Nordic Skiing Rules and Regulations Cross-Country Skiing and Biathlon,2018
4. Analysis of sprint cross-country skiing using a differential global navigation satellite system
5. Energy system contribution during competitive cross-country skiing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献