Centralized Fusion Approach to the Estimation Problem with Multi-Packet Processing under Uncertainty in Outputs and Transmissions

Author:

Caballero-Águila Raquel,Hermoso-Carazo Aurora,Linares-Pérez JosefaORCID

Abstract

This paper is concerned with the least-squares linear centralized estimation problem in multi-sensor network systems from measured outputs with uncertainties modeled by random parameter matrices. These measurements are transmitted to a central processor over different communication channels, and owing to the unreliability of the network, random one-step delays and packet dropouts are assumed to occur during the transmissions. In order to avoid network congestion, at each sampling time, each sensor’s data packet is transmitted just once, but due to the uncertainty of the transmissions, the processing center may receive either one packet, two packets, or nothing. Different white sequences of Bernoulli random variables are introduced to describe the observations used to update the estimators at each sampling time. To address the centralized estimation problem, augmented observation vectors are defined by accumulating the raw measurements from the different sensors, and when the current measurement of a sensor does not arrive on time, the corresponding component of the augmented measured output predictor is used as compensation in the estimator design. Through an innovation approach, centralized fusion estimators, including predictors, filters, and smoothers are obtained by recursive algorithms without requiring the signal evolution model. A numerical example is presented to show how uncertain systems with state-dependent multiplicative noise can be covered by the proposed model and how the estimation accuracy is influenced by both sensor uncertainties and transmission failures.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3