On Linear Coding over Finite Rings and Applications to Computing

Author:

Huang Sheng,Skoglund Mikael

Abstract

This paper presents a coding theorem for linear coding over finite rings, in the setting of the Slepian–Wolf source coding problem. This theorem covers corresponding achievability theorems of Elias (IRE Conv. Rec. 1955, 3, 37–46) and Csiszár (IEEE Trans. Inf. Theory 1982, 28, 585–592) for linear coding over finite fields as special cases. In addition, it is shown that, for any set of finite correlated discrete memoryless sources, there always exists a sequence of linear encoders over some finite non-field rings which achieves the data compression limit, the Slepian–Wolf region. Hence, the optimality problem regarding linear coding over finite non-field rings for data compression is closed with positive confirmation with respect to existence. For application, we address the problem of source coding for computing, where the decoder is interested in recovering a discrete function of the data generated and independently encoded by several correlated i.i.d. random sources. We propose linear coding over finite rings as an alternative solution to this problem. Results in Körner–Marton (IEEE Trans. Inf. Theory 1979, 25, 219–221) and Ahlswede–Han (IEEE Trans. Inf. Theory 1983, 29, 396–411, Theorem 10) are generalized to cases for encoding (pseudo) nomographic functions (over rings). Since a discrete function with a finite domain always admits a nomographic presentation, we conclude that both generalizations universally apply for encoding all discrete functions of finite domains. Based on these, we demonstrate that linear coding over finite rings strictly outperforms its field counterpart in terms of achieving better coding rates and reducing the required alphabet sizes of the encoders for encoding infinitely many discrete functions.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3