Biostimulants as Innovative Tools to Boost Date Palm (Phoenix dactylifera L.) Performance under Drought, Salinity, and Heavy Metal(Oid)s’ Stresses: A Concise Review

Author:

Akensous Fatima-ZahraORCID,Anli MohamedORCID,Meddich AbdelilahORCID

Abstract

Date palm (Phoenix dactylifera L.) is constantly subjected to abiotic stresses. Hence, the application of biostimulants, such as the arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR), and organic amendments hold tremendous potential to significantly improve the growth and yield of date palm. The strengthening of biostimulants’ main common modes of action is exerted through five main functions: biostimulation (essentially), biofertilization, bioprotection, biological control, and the role of bio-effector. Moreover, synergistic and complementary effects manifest through biochemical and nutritional benefits, in addition to molecular modulation. In this regard, the present concise review focuses on highlighting the beneficial impact of AMF and PGPR, as well as the organic amendments, in boosting the health status and productivity of date palm plants subjected to abiotic stresses. Furthermore, mechanisms reinforcing date palm plants’ resilience to abiotic stresses, powered by biostimulants, are particularly emphasized. Based on this review, we could conclude that the overall findings corroborate the beneficial effects of AMF–PGPR and/or compost and manure application in terms of boosting date palm’s growth traits, development, yielding, as well as soil properties under extreme environmental factors, such as those of drought, salinity, and excessive heavy metal(oid)s. Thus, biostimulants can confer resilience to date palm plants against abiotic stresses.

Funder

Tuniso-Moroccan Mixed Laboratories (LMTM) of Plant Physiology and Biotechnology and Climate Change LPBV2C

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3