Simple Aminated Modified Zeolite 4A Synthesized Using Fly Ash and Its Remediation of Mercury Contamination: Characteristics and Mechanism

Author:

Gao Mengdan,Yang Liyun,Yang Shuangjian,Jiang Tong,Wu Fei,Nagasaka TetsuyaORCID

Abstract

In this study, through simple ammonia impregnation, more amine functional groups could be introduced into the zeolite 4A synthesized using fly ash, which efficiently improved the mercury ion removal capacity of modified zeolites. The impregnation-modification mechanism of NH3·H2O, ammonium chloride, and silane coupling agent (KH792) for zeolite 4A, and the Hg2+ ion removal-efficiency by aminated zeolites, were studied and compared. Through ion exchange and hydroxyl reactions, NH3·H2O impregnation introduced the same kinds of nitrogen-containing groups into zeolite as KH792 grafting, which was more than the NH4Cl modification. The Hg2+ ion adsorption capacity of NH3·H2O-zeolite was higher than those of KH792-zeolite and NH4Cl-zeolite through ion exchange and the complexation of nitrogen-containing groups. When coexisting with Pb2+, Cu2+, and Zn2+ ions, the Hg2+ ion removal rate of NH3·H2O-zeolite was still higher than 99%. After five adsorption and desorption cycles, the Hg2+ ion removal rate of NH3·H2O-zeolite was 72.03%. When NH3·H2O-zeolite was added to the leaching of mercury-contaminated soil, the content of soluble mercury significantly decreased. Therefore, we synthesized a potential cheap and safe adsorbent using fly ash as the main raw material through the simple NH3·H2O impregnation modification for the treatment of mercury-contaminated water and soil.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3