Characteristics and Formation Mechanism of Surface Residual Deformation above Longwall Abandoned Goaf

Author:

Bai ErhuORCID,Li Xueyi,Guo Wenbing,Tan Yi,Guo Mingjie,Wen Peng,Ma ZhibaoORCID

Abstract

With the rapid development of social economy in China, the contradiction between the wide distribution of abandoned goaf and the shortage of land for engineering construction is becoming increasingly prominent. The effective utilization of coal mining subsidence areas has become an effective measure to alleviate the poverty of construction land in mining areas and promote the green transformation of mining cities. The key to the scientific utilization of abandoned goaf is the prevention and control of surface residual deformation, which depends on the formation mechanism of surface residual deformation. Based on the regularity of mining-induced surface movement and deformation under different mining sizes, it is concluded that the full mining degree of working face is the primary condition for entering the surface recession period. The trapezoidal and periodic forward movement characteristics of mining-induced overburden destruction are analyzed. The regularity of upward transmission of mining-induced fissures with overburden destruction is clarified. The influencing factors of surface residual deformation are equivalent to the influencing factors of overburden structure and caved zone. The deformation characteristics of broken rock in the caved zone under different conditions (particle size, gradation, and water content) are analyzed. It is concluded that the surface residual subsidence near the boundary of the goaf is more significant than that in the middle of the goaf. It is revealed that the overburden structure at the boundary of the goaf and the re-compaction of the caved zone is the mechanism of surface residual deformation. The characteristics of surface residual deformation in abandoned goaf have been verified by field measurement, and it is pointed out that the surface residual deformation in abandoned goaf has long-term characteristics, which provides a theoretical basis for accurate prediction of surface residual deformation and rational utilization of abandoned goaf.

Funder

Open Fund of Shaanxi Key Laboratory of Geological Support for Coal Green Exploitation

National Natural Science Foundation of China

Key Project of the National Natural Science Foundation of China

Leading talents in scientific and technological innovation in Central Plains

Key Scientific Research Projects of Colleges and Universities in Henan Province

Henan Science and Technology Research Project

Open fund of State Key Laboratory of Coal Resources in Western China

Program for Outstanding Young Talent Projects of Henan Province

Program for Science and Technology Innovation Talents in Universities of Henan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3