Abstract
Microplastics (MPs), defined as plastics with diameters between 1 and 5000 µm, are problematic pollutants in the environment, but their removal is challenging because of their minute size. One promising approach for their removal is flotation because MPs are inherently hydrophobic. However, the very small particle size of MPs lowers the probability of MPs-bubble collision and attachment that in turn affects the efficiency of the process. To address this challenge, we propose the use of agglomeration-flotation, a technique using kerosene as a bridging liquid to enlarge the particle sizes of MPs and make them amenable to flotation. In this study, the effects of kerosene dosage on particle size enlargement and floatability of six types of MPs with 100–1000 µm size fractions were investigated. The results showed that MPs with lower density compared with water could easily float in water without bubble attachment and particle agglomeration required. So, the effects of agglomeration on removal were negligible. In contrast, agglomeration using kerosene enhanced the floatability of MPs with high-density plastics. Moreover, image analysis was used to determine the agglomerated MPs’ particle size. The results indicate that kerosene could agglomerate the MPs and enhanced the removal of MPs by agglomeration-flotation.
Funder
Thailand Science research and Innovation Fund Chulalongkorn University
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献