Agglomeration–Flotation of Microplastics Using Kerosene as Bridging Liquid for Particle Size Enlargement

Author:

Julapong Pongsiri,Ekasin Jiraphon,Katethol Pattaranun,Srichonphaisarn Palot,Juntarasakul Onchanok,Numprasanthai Apisit,Tabelin Carlito BaltazarORCID,Phengsaart Theerayut

Abstract

Microplastics (MPs), defined as plastics with diameters between 1 and 5000 µm, are problematic pollutants in the environment, but their removal is challenging because of their minute size. One promising approach for their removal is flotation because MPs are inherently hydrophobic. However, the very small particle size of MPs lowers the probability of MPs-bubble collision and attachment that in turn affects the efficiency of the process. To address this challenge, we propose the use of agglomeration-flotation, a technique using kerosene as a bridging liquid to enlarge the particle sizes of MPs and make them amenable to flotation. In this study, the effects of kerosene dosage on particle size enlargement and floatability of six types of MPs with 100–1000 µm size fractions were investigated. The results showed that MPs with lower density compared with water could easily float in water without bubble attachment and particle agglomeration required. So, the effects of agglomeration on removal were negligible. In contrast, agglomeration using kerosene enhanced the floatability of MPs with high-density plastics. Moreover, image analysis was used to determine the agglomerated MPs’ particle size. The results indicate that kerosene could agglomerate the MPs and enhanced the removal of MPs by agglomeration-flotation.

Funder

Thailand Science research and Innovation Fund Chulalongkorn University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3