Research on Improved Traffic Flow Prediction Network Based on CapsNet

Author:

Qiu Bin,Zhao Yun

Abstract

Traffic flow prediction is the basis and key to the realization of an intelligent transportation system. The road traffic flow prediction of city-level complex road network can be realized using traffic big data. In the traffic prediction task, the limitation of the convolutional neural network (CNN) for modeling the spatial relationship of the road network and the insufficient feature extraction of the shallow network make it impossible to accurately predict the traffic flow. In order to improve the prediction performance of the model, this paper proposes an improved capsule network (MCapsNet) based on capsule network (CapsNet). First, in the preliminary feature extraction stage, a depthwise separable convolutional block is added to expand the feature channel to enrich channel information. Subsequently, in order to strengthen the reuse of important features and suppress useless information, channel attention is used to selectively reinforce learning of extended channel information so that the network can extract a large number of high-dimensional important features and improve the ability of network feature learning and expression. At the same time, in order to alleviate the feature degradation during training and the channel collapse problem easily caused by deep convolution, a shortcut connection, and a modified linear bottleneck layer structure are added to the convolution layer. The bottleneck layer adds the depth convolution and channel attention connection to the residual block of the network. Finally, the deep local feature information extracted from the improved convolutional layer is vectorized into the form of a capsule, which can more accurately model the details of road network attributes and features and improve the model expression power and prediction performance. The network is tested on the Wenyi Road dataset and the public dataset SZ-taxi. Compared with other models, the evaluation indicators of MCapsNet are better than other models in the tests of different time periods and predictors. Compared with CapsNet, the RMSE index of MCapsNet is reduced by 10.50% in the full period of Wenyi Road, 4.66% in the peak period, 9.78% in the off-peak period, and 6.07% in the SZ-tax dataset. The experimental results verify the effectiveness of the model improvement.

Funder

National Key Research and Development Program of China

Science and Technology project of Zhejiang Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3