Abstract
The Indian Himalayan region is experiencing frequent hazards and disasters related to permafrost. However, research on permafrost in this region has received very little or no attention. Therefore, it is important to have knowledge about the spatial distribution and state of permafrost in the Indian Himalayas. Modern remote sensing techniques, with the help of a geographic information system (GIS), can assess permafrost at high altitudes, largely over inaccessible mountainous terrains in the Himalayas. To assess the spatial distribution of permafrost in the Alaknanda Valley of the Chamoli district of Uttarakhand state, 198 rock glaciers were mapped (183 active and 15 relict) using high-resolution satellite data available in the Google Earth database. A logistic regression model (LRM) was used to identify a relationship between the presence of permafrost at the rock glacier sites and the predictor variables, i.e., the mean annual air temperature (MAAT), the potential incoming solar radiation (PISR) during the snow-free months, and the aspect near the margins of rock glaciers. Two other LRMs were also developed using moderate-resolution imaging spectroradiometer (MODIS)-derived land surface temperature (LST) and snow cover products. The MAAT-based model produced the best results, with a classification accuracy of 92.4%, followed by the snow-cover-based model (91.9%), with the LST-based model being the least accurate (82.4%). All three models were developed to compare their accuracy in predicting permafrost distribution. The results from the MAAT-based model were validated with the global permafrost zonation index (PZI) map, which showed no significant differences. However, the predicted model exhibited an underestimation of the area underlain by permafrost in the region compared to the PZI. Identifying the spatial distribution of permafrost will help us to better understand the impact of climate change on permafrost and its related hazards and provide necessary information to decision makers to mitigate permafrost-related disasters in the high mountain regions.
Funder
ISRO’s Disaster Management Support Programme
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献