Modeling Permafrost Distribution Using Geoinformatics in the Alaknanda Valley, Uttarakhand, India

Author:

Pandey Arvind Chandra,Ghosh TirthankarORCID,Parida Bikash RanjanORCID,Dwivedi Chandra Shekhar,Tiwari Reet KamalORCID

Abstract

The Indian Himalayan region is experiencing frequent hazards and disasters related to permafrost. However, research on permafrost in this region has received very little or no attention. Therefore, it is important to have knowledge about the spatial distribution and state of permafrost in the Indian Himalayas. Modern remote sensing techniques, with the help of a geographic information system (GIS), can assess permafrost at high altitudes, largely over inaccessible mountainous terrains in the Himalayas. To assess the spatial distribution of permafrost in the Alaknanda Valley of the Chamoli district of Uttarakhand state, 198 rock glaciers were mapped (183 active and 15 relict) using high-resolution satellite data available in the Google Earth database. A logistic regression model (LRM) was used to identify a relationship between the presence of permafrost at the rock glacier sites and the predictor variables, i.e., the mean annual air temperature (MAAT), the potential incoming solar radiation (PISR) during the snow-free months, and the aspect near the margins of rock glaciers. Two other LRMs were also developed using moderate-resolution imaging spectroradiometer (MODIS)-derived land surface temperature (LST) and snow cover products. The MAAT-based model produced the best results, with a classification accuracy of 92.4%, followed by the snow-cover-based model (91.9%), with the LST-based model being the least accurate (82.4%). All three models were developed to compare their accuracy in predicting permafrost distribution. The results from the MAAT-based model were validated with the global permafrost zonation index (PZI) map, which showed no significant differences. However, the predicted model exhibited an underestimation of the area underlain by permafrost in the region compared to the PZI. Identifying the spatial distribution of permafrost will help us to better understand the impact of climate change on permafrost and its related hazards and provide necessary information to decision makers to mitigate permafrost-related disasters in the high mountain regions.

Funder

ISRO’s Disaster Management Support Programme

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3