Application of Extended Set Pair Analysis on Wear Risk Evaluation of Backfill Pipeline

Author:

Wu Zaihai,Qi Zhaojun,Kou Yunpeng,Li ZhengORCID,Zhao GuoyanORCID,Liang Weizhang

Abstract

Filling slurry can inevitably cause irreversible wear to the pipeline, which represents great costs to mines. This study aims to propose an extended set pair analysis (SPA) for the wear risk evaluation of backfill pipeline. First, to fully describe the wear risk of backfill pipeline, an evaluation index system was established from the aspects of slurry characteristics, pipeline properties, and slurry flow state. Then, the experts grading method was modified with probabilistic linguistic term sets (PLTSs) to obtain subjective weights. Meanwhile, the criteria importance through intercriteria correlation (CRITIC) approach was used to calculate objective weights. By introducing a preference coefficient, they were integrated to determine the comprehensive weights. After that, the classical SPA was extended with membership functions and fuzzy entropy theory, so that the wear risk of backfill pipeline can be evaluated from the perspectives of both the risk level and complexity. Finally, the proposed methodology was applied to assess the wear risk in the Jinchuan nickel mine, Dahongshan copper mine, Hedong gold mine, and Xincheng gold mine. The reliability of evaluation results was further verified through sensitivity and comparative analyses. Results indicate that the proposed methodology is feasible for the wear risk evaluation of backfill pipeline, and can provide guidance on the wear risk management.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3