Model Test and Numerical Simulation Research of Reinforced Soil Retaining Walls under Cyclic Loads

Author:

Wang He,Wang Nan,Yang Guangqing,Ma Jian

Abstract

The stress diffusion characteristics of reinforced soil retaining walls (RSW) with concrete-block panels under cyclic loads are studied. The distribution of the vertical dynamic earth pressure caused by an external load and the analysis of stress diffusion angles were studied using a model test and the numerical simulation model of the reinforced soil retaining wall was established to analyze the change in the stress diffusion angle. We then changed the parameters to investigate the influencing factors of the stress diffusion characteristics. The results showed that: the average value of the peak vertical dynamic earth pressure caused by an external load at the loading position of the RSW was a nonlinear distribution, decaying from top to bottom and increasing with the increase in the loading amplitude, while the change in the loading frequency number of loading cycles had no obvious rule. The results of model test and numerical simulation agree with each other. The diffusion angle of the stress caused by the external load of the reinforced body was basically between 50° and 65° in the range from 1.8 m to 1.2 m, the diffusion angle at the top was slightly larger than the middle, and the diffusion angle away from the wall was larger than the diffusion angle close to the wall. The main factors affecting the stress diffusion in reinforced soil retaining walls are the coefficient of reinforcement of the soil and the dynamic stress amplitude; the stress diffusion angle increased with an increase in the coefficient of the reinforcement of the soil and the dynamic stress amplitude. The conclusion of this paper can provide a reference for the design of reinforced soil structures.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference14 articles.

1. An experimental study of the structural behavior of reinforced soil retaining wall with concrete-block panel;Rock Soil Mech.,2016

2. In-situ test on dynamic responses of reinforced soil retaining walls for high-speed railways;J. Southwest Jiaotong Univ.,2017

3. 3D modeling of geosynthetic-reinforced pile-supported embankment under cyclic loading;Geosynth. Int.,2018

4. Analysis of unreinforced and reinforced shallow piled embankments under cyclic loading;Geosynth. Int.,2019

5. Quantitative analysis of shallow unreinforced and reinforced piled embankments with different heights subject to cyclic loads: Experimental study;Soil Dyn. Earthq. Eng.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3