Solid Waste Management Scenario in India and Illegal Dump Detection Using Deep Learning: An AI Approach towards the Sustainable Waste Management

Author:

Shahab SanaORCID,Anjum Mohd

Abstract

The study is presented in four sections. The first section defines the municipal solid waste and solid waste management system. The second section illustrates the descriptive statistical analysis of waste generation patterns in India. The average waste generation in India was 160,038.9 tons per day in 2021; 95% of this total waste was collected and transported to the disposal sites. Based on scientific studies and observations, the per capita waste generation rate in 2018 was 0.490–0.626 g per day. In the last one and a half decades (1999–2000 to 2015–2016), Delhi and Bangalore have shown the highest percentage growth of 2075% and 1750%, respectively, in total waste generation among the highest population cities. The analysis of waste generation patterns concludes urbanization is a major factor that highly influences the waste generation rate. The third section describes the major issues in current solid waste management services. Some of these issues are the unavailability of web portals for citizens, no real-time monitoring of bins, collection vehicles and illegal dumping. These issues are identified based on the survey performed in a city and analysis of related research studies and scientific reports. We determined that illegal dumping is one of these major concerns and needs a technological solution. In the fourth section, we propose a multipath convolutional neural network (mp-CNN) to detect and localize the waste dumps on streets and roadsides. We constructed our dataset to train and test the proposed model, as no benchmark dataset is publicly available to obtain this objective. We applied the weakly supervised learning approach to training the model. In this approach, mp-CNN was trained according to the image class; in our case, it is two (waste and non-waste). In the testing phase, the model showed the performance evaluation matrices 97.82% of precision, 98.86% of recall, 98.34% of F1 score, 98.33% of accuracy, and 98.63% of AUROC for this binary classification. Due to the scarcity of benchmark datasets, waste localization results cannot be presented quantitatively. So, we performed a survey to compare the overlapping of the mask generated by the model with the region waste in the actual image. The average score for the generated mask obtained a score of 3.884 on a scale of 5. Based on the analysis of model performance evaluation parameters, precision-recall curve, receiver characteristic operator curve, and comparison of mask generated by the model over waste with corresponding actual images show that mp-CNN performs remarkably good in detection, classification, and localization of waste regions. Finally, two conceptual architectures in the context of developing countries are suggested to demonstrate the future practical applications of the mp-CNN model.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference86 articles.

1. Solid Waste Management-Sustainability towards a Better Future, Role of CSR—A Review;Rajesh;Soc. Responsib. J.,2019

2. Alonso, M.G.V.P., and Themelis, N. (2011). Department of Earth and Environmental Engineering Columbia University, Columbia University.

3. Kaza, S., Yao, L.C., Bhada-Tata, P., and Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, The World Bank Group. World Bank Publications.

4. Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O., and Odeyemi, O. (2020). Waste Management through Composting: Challenges and Potentials. Sustainability, 12.

5. Census of India. Office of the Registrar General & Census Commissioner India (2011). Provisional Population Totals, Paper 1 of 2011, Census of India 2011.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3