Accuracy vs. Energy: An Assessment of Bee Object Inference in Videos from On-Hive Video Loggers with YOLOv3, YOLOv4-Tiny, and YOLOv7-Tiny

Author:

Kulyukin Vladimir A.1ORCID,Kulyukin Aleksey V.1

Affiliation:

1. Department of Computer Science, Utah State University, Logan, Utah, USA

Abstract

A continuing trend in precision apiculture is to use computer vision methods to quantify characteristics of bee traffic in managed colonies at the hive’s entrance. Since traffic at the hive’s entrance is a contributing factor to the hive’s productivity and health, we assessed the potential of three open-source convolutional network models, YOLOv3, YOLOv4-tiny, and YOLOv7-tiny, to quantify omnidirectional traffic in videos from on-hive video loggers on regular, unmodified one- and two-super Langstroth hives and compared their accuracies, energy efficacies, and operational energy footprints. We trained and tested the models with a 70/30 split on a dataset of 23,173 flying bees manually labeled in 5819 images from 10 randomly selected videos and manually evaluated the trained models on 3600 images from 120 randomly selected videos from different apiaries, years, and queen races. We designed a new energy efficacy metric as a ratio of performance units per energy unit required to make a model operational in a continuous hive monitoring data pipeline. In terms of accuracy, YOLOv3 was first, YOLOv7-tiny—second, and YOLOv4-tiny—third. All models underestimated the true amount of traffic due to false negatives. YOLOv3 was the only model with no false positives, but had the lowest energy efficacy and highest operational energy footprint in a deployed hive monitoring data pipeline. YOLOv7-tiny had the highest energy efficacy and the lowest operational energy footprint in the same pipeline. Consequently, YOLOv7-tiny is a model worth considering for training on larger bee datasets if a primary objective is the discovery of non-invasive computer vision models of traffic quantification with higher energy efficacies and lower operational energy footprints.

Funder

three open science hive monitoring fundraisers

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3