Dynamic Behavior and Deposit Features of Debris Avalanche in Model Tests Using High Speed Photogrammetry

Author:

Wei Yong,Xu Qiang,Yang He,Li Huajin,Kou Pinglang

Abstract

Model tests of debris avalanche can not only illuminate formation mechanisms but also represent deformation and motion processes. At present, the static terrain data of model tests are measured before and after experiments using terrestrial laser scanning. To study the motion and deformation of research objects, it is necessary to explore new techniques to obtain dynamic terrain data in the course of experimentation. In this paper, taking specified experimental tests of debris avalanche as an example, the method of 4D reconstruction using high-speed close-range photogrammetry is described in detail. The dynamic terrain data of model tests were obtained after the data were processed. Then, the dynamic behavior and deposit features of debris avalanche were analyzed in detail. Results show that dynamic terrain data of model tests can be obtained rapidly and accurately with this method. The propagation and deposit processes of the debris avalanche have evident stage characteristics, which can be divided into the starting, acceleration, constant, and deceleration stages. The granular size, slope angle, and barrier effect have a great influence on the travel distance and duration of the debris avalanche. The depth of the intermediate and leading area of the debris avalanche increased gradually and the depth of the trailing area first increased then decreased. We believe that this approach can also be applied to other domains involving the acquisition of dynamic terrain data and, thus, deserves to be applied widely.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3