Exploring the Multiverse of Analytical Decisions in Scaling Educational Large-Scale Assessment Data: A Specification Curve Analysis for PISA 2018 Mathematics Data

Author:

Robitzsch AlexanderORCID

Abstract

In educational large-scale assessment (LSA) studies such as PISA, item response theory (IRT) scaling models summarize students’ performance on cognitive test items across countries. This article investigates the impact of different factors in model specifications for the PISA 2018 mathematics study. The diverse options of the model specification also firm under the labels multiverse analysis or specification curve analysis in the social sciences. In this article, we investigate the following five factors of model specification in the PISA scaling model for obtaining the two country distribution parameters; country means and country standard deviations: (1) the choice of the functional form of the IRT model, (2) the treatment of differential item functioning at the country level, (3) the treatment of missing item responses, (4) the impact of item selection in the PISA test, and (5) the impact of test position effects. In our multiverse analysis, it turned out that model uncertainty had almost the same impact on variability in the country means as sampling errors due to the sampling of students. Model uncertainty had an even larger impact than standard errors for country standard deviations. Overall, each of the five specification factors in the multiverse analysis had at least a moderate effect on either country means or standard deviations. In the discussion section, we critically evaluate the current practice of model specification decisions in LSA studies. It is argued that we would either prefer reporting the variability in model uncertainty or choosing a particular model specification that might provide the strategy that is most valid. It is emphasized that model fit should not play a role in selecting a scaling strategy for LSA applications.

Publisher

MDPI AG

Subject

Applied Psychology,Clinical Psychology,Developmental and Educational Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3