Thermal Treatment of Trichloroethene by Electrical Resistance Heating: Visualization of Gas Production in Coarse Layers

Author:

Nunez Garcia Ariel1ORCID,Wang Pengjie1,Hegele Paul R.2,Mumford Kevin G.1

Affiliation:

1. Department of Civil Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada

2. Arcadis, 1285 W Pender St #700, Vancouver, BC V6E 4B1, Canada

Abstract

The effective implementation of in situ thermal treatment (ISTT) technologies requires understanding of gas production and migration in heterogenous media. However, investigations of the effects of high permeability contrast on gas formation, accumulation, and migration, as well as its potential effect on the redistribution of dense non-aqueous phase liquid (DNAPL), are relatively rare. In this study, electrical resistance heating (ERH) experiments were conducted in a thin sand-packed cell to simulate common yet not well-studied scenarios encountered during ISTT applications, such as coarse lenses surrounded by finer material. Two packing configurations were employed: 2 mm glass beads surrounded by 20/30 silica sand and 20/30 silica sand overlaying 40/50 silica sand. Each experiment contained an emplaced pool of trichloroethene (TCE) within the coarse material. If permeable material or pathways were present between the coarse lens and the upper cell boundary, the gas migrated along these pathways, and local DNAPL redistribution was limited to near the top of the pool before it vaporized. In contrast, if the coarse material was surrounded by finer material and contained a sufficient volume of DNAPL, the gas accumulated inside the coarse lens leading to DNAPL displacement from the lens. For five selected DNAPLs, this volume was estimated to be 0.1% to 0.5% of the total pore volume of the coarse material. The conceptual model developed in this study improves our understanding of this common geological scenario, demonstrating the importance of considering both lower- and higher-permeability material and their effects on multiphase flow during co-boiling, as well as the design of gas extraction systems during ISTT applications.

Funder

Natural Sciences and Engineering Research Council of Canada (NSERC) Strategic Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3