Affiliation:
1. Academy of Agriculture and Forestry Sciences, Qinghai University, Xining 810016, China
2. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
3. Key Laboratory of Agricultural Integrated Pest Management of Qinghai Province, Xining 810016, China
Abstract
Biological control is a scientific management method used in modern agricultural production, and microbially derived biopesticides are one effective method with which to control weeds in agricultural fields. In order to determine the key genes for weed control by Trichoderma polysporum, transcriptome sequencing was carried out by high-throughput sequencing technology, and the strains of T. polysporum HZ-31 infesting Avena fatua L. at 24, 48, and 72 h were used as the experimental group, with 0 h as the control group. A total of 690,713,176 clean reads were obtained, and the sequencing results for each experimental group and the control group (0 h) were analyzed. In total, 3464 differentially expressed genes were found after 24 h of infection with the pathogen, including 1283 down-regulated genes and 2181 up-regulated genes. After 48 h of infection, the number of differentially expressed genes was 3885, of which 2242 were up-regulated and 1643 were down-regulated. The number of differentially expressed genes after 72 h of infection was the highest among all the groups, with 4594 differentially expressed genes, of which 2648 were up-regulated and 1946 were down-regulated. The up-regulated genes were analyzed by GO and KEGG, and the results showed that the up-regulated differentially expressed genes were mainly enriched in the biosynthesis of phenylalanine, tyrosine, and tryptophan; the degradation of aromatic compounds; methane metabolism; and other pathways. Among them, the PHA2, GDH, ADH2, and AROF genes were significantly enriched in the above-mentioned pathways, so they were hypothesized to play an important role in the synthesis of the herbicidally active substances of T. polysporum HZ-31. The results of this study can provide a theoretical basis for further studies on the pathogenicity of T. polysporum to A. fatua L., and accelerate the development and utilization of new and efficient bioherbicides.
Funder
Science and Technology Department of Qinghai Province