Affiliation:
1. Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
2. College of Life Sciences, Guangxi Normal University, Guilin 541006, China
3. School of Pharmacy, Guilin Medical University, Guilin 541006, China
4. Agriculture and Rural Affairs Bureau of Quanzhou County, Guilin 541599, China
Abstract
Arbuscular mycorrhizal fungi play a key role in mediating soil–plant relationships within karst ecosystems. Sophora japonica, a medicinal plant with anti-inflammatory and antitumor properties, is widely cultivated in karst areas of Guangxi, China. We considered limestone, dolomite, and sandstone at altitudes ranging from 100 to 800 m and employed Illumina sequencing to evaluate AMF diversity and identify the factors driving S. japonica rhizosphere AMF community changes. We showed that the increase in altitude increased S. japonica AMF colonization and the Shannon index. The colonization of limestone plots was higher than that of other lithology. In total, 3,096,236 sequences and 5767 OTUs were identified in S. japonica rhizosphere soil. Among these, 270 OTUs were defined at the genus level and divided into 7 genera and 35 species. Moreover, available nitrogen, soil organic matter, and available calcium content had a coupling effect and positive influence on AMF colonization and Shannon and Chao1 indices. Conversely, available phosphorus, available potassium, and available magnesium negatively affected AMF Shannon and Chao1 indices. Lithology, altitude, pH, and available phosphorus are important factors that affect the dynamics of AMF in the S. japonica rhizosphere.
Funder
the National Natural Science Foundation of China
the Basic Research Fund of the Guangxi Academy of Sciences
the Guangxi Scientific and Technological Project
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献