Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020

Author:

Zhang Siqi,Chen PengORCID,Zhang ZhenhuaORCID,Pan Delu

Abstract

Quantified research on the Arctic Ocean carbon system is poorly understood, limited by the scarce available data. Measuring the associated phytoplankton responses to air–sea CO2 fluxes is challenging using traditional satellite passive ocean color measurements due to low solar elevation angles. We constructed a feedforward neural network light detection and ranging (LiDAR; FNN-LID) method to assess the Arctic diurnal partial pressure of carbon dioxide (pCO2) and formed a dataset of long-time-series variations in diurnal air–sea CO2 fluxes from 2001 to 2020; this study represents the first time spaceborne LiDAR data were employed in research on the Arctic air–sea carbon cycle, thus providing enlarged data coverage and diurnal pCO2 variations. Although some models replace Arctic winter Chl-a with the climatological average or interpolated Chl-a values, applying these statistical Chl-a values results in potential errors in the gap-filled wintertime pCO2 maps. The CALIPSO measurements obtained through active LiDAR sensing are not limited by solar radiation and can thus provide ‘fill-in’ data in the late autumn to early spring seasons, when ocean color sensors cannot record data; thus, we constructed the first complete record of polar pCO2. We obtained Arctic FFN-LID-fitted in situ measurements with an overall mean R2 of 0.75 and an average RMSE of 24.59 µatm and filled the wintertime observational gaps, thereby indicating that surface water pCO2 is higher in winter than in summer. The Arctic Ocean net CO2 sink has seasonal sources from some continental shelves. The growth rate of Arctic seawater pCO2 is becoming larger and more remarkable in sectors with significant sea ice retreat. The combination of sea surface partial pressure and wind speed impacts the diurnal carbon air–sea flux variability, which results in important differences between the Pacific and Atlantic Arctic Ocean. Our results show that the diurnal carbon sink is larger than the nocturnal carbon sink in the Atlantic Arctic Ocean, while the diurnal carbon sink is smaller than the nocturnal carbon sink in the Pacific Arctic Ocean.

Funder

National Key Research and Development Program of China

Key Special Project for the Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory

National Natural Science Foundation

Key Research and Development Program of Zhejiang Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3