Production and Characterization of Austenitic Stainless Steel Cast Parts Reinforced with WC Particles Fabricated by Ex Situ Technique

Author:

Moreira Aida B.ORCID,Ribeiro Laura M. M.ORCID,Lacerda Pedro,Pinto Ana M. P.,Vieira Manuel F.ORCID

Abstract

In this work, austenitic stainless steel specimens were locally reinforced with WC particles. The reinforcements were fabricated via an ex situ technique based on powder technology. Mixtures of WC, Fe, and M0101 binder were cold-pressed to obtain powder compacts. After debinding and sintering, the porous WC–Fe inserts were fixed in a mold cavity, where they reacted with liquid metal. Microstructural analysis was conducted for characterization of the phases constituting the produced reinforcement zone and the bonding interface. The results revealed that the reinforcement is a graded material with compositional and microstructural gradients throughout its thickness. The zone nearest to the surface has a ferrous matrix with homogeneously distributed WC particles and (Fe,W,Cr)6C and (Fe,W,Cr)3C carbides, formed from the liquid metal reaction with the insert. This precipitation leads to austenite destabilization, which transforms into martensite during cooling. A vast dissolution of the WC particles occurred in the inner zones, resulting in more intense carbides formation. Cr-rich carbides ((Fe,Cr,W)7C3, and (Fe,Cr,W)23C6) formed in the interdendritic regions of austenite; this zone is characterized by coarse dendrites of austenite and a multi-phase interdendritic network composed of carbides. An interface free of discontinuities and porosities indicates good bonding of the reinforcement zone to stainless steel.

Funder

program P2020|COMPETE, Projetos em Copromoção

Publisher

MDPI AG

Subject

General Materials Science

Reference46 articles.

1. ASM Specialty Handbook: Stainless Steels;Davis,1994

2. Austenitic Stainless Steels;McGuire,2008

3. Group E: Standard austenitic stainless steels;Farrar,2004

4. GRANTA EduPack 2020—Database: Level 3, 20.1.1,2020

5. Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behaviour

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3