Improved Thermo-Mechanical Properties and Reduced Hydrogen Permeation of Short Side-Chain Perfluorosulfonic Acid Membranes Doped with Ti3C2Tx

Author:

Guan Panpan,Lei Jianlong,Zou Yecheng,Zhang Yongming

Abstract

Benefiting from its large specific surface with functional -OH/-F groups, Ti3C2Tx, a typical two-dimensional (2D) material in the recently developed MXene family, was synthesized and used as a filler to improve the properties of the short side-chain (SSC) perfluorosulfonic acid (PFSA) proton exchange membrane. It is found that the proton conductivity is enhanced by 15% while the hydrogen permeation is reduced by 45% after the addition of 1.5 wt% Ti3C2Tx filler into the SSC PFSA membrane. The improved proton conductivity of the composite membrane could be associated with the improved proton transport environment in the presence of the hydrophilic functional groups (such as -OH) of the Ti3C2Tx filler. The significantly reduced hydrogen permeation could be attributed to the incorporation of the impermeable Ti3C2Tx 2D fillers and the decreased hydrophilic ionic domain spacing examined by the small angle X-ray scattering (SAXS) for the composite membrane. Furthermore, improved thermo-mechanical properties of the SSC/Ti3C2Tx composite membrane were measured by dynamic mechanical analyzer (DMA) and tensile strength testing. The demonstrated higher proton conductivity, lower hydrogen permeation, and improved thermo-mechanical stability indicate that the SSC/Ti3C2Tx composite membranes could be a potential membrane material for PEM fuel cells operating above the water boiling temperature.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3