Influence of Forced Carbonisation on the Binding Properties of Sludge with a High β-Belite Content

Author:

Bakhtin AleksandrORCID,Lyubomirskiy NikolayORCID,Fic Stanisław,Bakhtina Tamara

Abstract

Alternative binders activated by forced carbonisation are regarded as one of the potential solutions to reducing greenhouse gas emissions, water, and energy consumption. Such binders, in particular those based on nepheline sludge (a by-product of alumina production), cured in carbon dioxide with subsequent hydration, are clinkerless building materials. The development of such binders contributes to the involvement of multi-tonnage solid industrial waste in the production cycle. This type of waste is capable of binding man-made CO2 and transforming it into stable insoluble compounds, having binder properties. The optimum technological parameters of the forced carbonisation of the nepheline slime binder was determined by the mathematical planning of the experiment. The novelty of the research is the expansion of the secondary raw material base that can bind the man-made CO2 with obtaining the construction products of appropriate quality. It was revealed that the process of active CO2 absorption by the minerals of nepheline slime is observed in the first 120 min of the forced carbonization. Immediately after carbonisation, the resulting material develops compressive strength up to 57.64 MPa, and at the subsequent hydration within 28 days this figure increases to 68.71 MPa. Calcium carbonate is the main binder that determines the high mechanical properties of the samples. During the subsequent hydration of the uncoated belite, gel-like products are formed, which additionally harden the carbonised matrix. Thus, after the forced carbonisation and the following 28 days of hardening, the material with compressive strength in the range 4.38–68.71 MPa and flexural strength of 3.1–8.9 MPa was obtained. This material was characterised by water absorption by mass in the range of 13.9–23.3% and the average density of 1640–1886 kg/m3. The softening coefficient of the material was 0.51–0.99. The results obtained enables one to consider further prospects for research in this area, in terms of the introduction of additional technological parameters to study the process of forced carbonisation of nepheline slime.

Publisher

MDPI AG

Subject

General Materials Science

Reference37 articles.

1. Possible climate transitions from breakup of stratocumulus decks under greenhouse warming

2. United Nations Sustainable Development https://www.un.org/sustainabledevelopment/ru/climate-change/

3. Celebrating the anniversary of three key events in climate change science

4. Time for Action https://unfccc.int/sites/default/files/resource/cp2019__L10E_adv.pdf/

5. CO2 emission reduction in the cement industry by using a solar calciner

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3