Detoxification of the Fumonisin Mycotoxins in Maize: An Enzymatic Approach

Author:

Alberts JohannaORCID,Schatzmayr GerdORCID,Moll Wulf-DieterORCID,Davids Ibtisaam,Rheeder JohnORCID,Burger Hester-Mari,Shephard Gordon,Gelderblom Wentzel

Abstract

Enzymatic detoxification has become a promising approach for control of mycotoxins postharvest in grains through modification of chemical structures determining their toxicity. In the present study fumonisin esterase FumD (EC 3.1.1.87) (FUMzyme®; BIOMIN, Tulln, Austria), hydrolysing fumonisin (FB) mycotoxins by de-esterification, was utilised to develop an enzymatic reduction method in a maize kernel enzyme incubation mixture. Efficacy of the FumD FB reduction method in “low” and “high” FB contaminated home-grown maize was compared by monitoring FB1 hydrolysis to the hydrolysed FB1 (HFB1) product utilising a validated LC-MS/MS analytical method. The method was further evaluated in terms of enzyme activity and treatment duration by assessing enzyme kinetic parameters and the relative distribution of HFB1 between maize kernels and the residual aqueous environment. FumD treatments resulted in significant reduction (≥80%) in “low” (≥1000 U/L, p < 0.05) and “high” (100 U/L, p < 0.05; ≥1000 U/L, p < 0.0001) FB contaminated maize after 1 h respectively, with an approximate 1:1 µmol conversion ratio of FB1 into the formation of HFB1. Enzyme kinetic parameters indicated that, depending on the activity of FumD utilised, a significantly (p < 0.05) higher FB1 conversion rate was noticed in “high” FB contaminated maize. The FumD FB reduction method in maize could find application in commercial maize-based practices as well as in communities utilising home-grown maize as a main dietary staple and known to be exposed above the tolerable daily intake levels.

Funder

South African Maize Trust

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

Reference45 articles.

1. Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins

2. Trichoderma viride Suppresses Fumonisin B1 Production by Fusarium moniliforme

3. Biological control of Fusarium moniliforme in maize;Bacon;Environ. Health Perspect.,2001

4. Prospects for reducing fumonisin contamination of maize through genetic modification;Duvick;Environ. Health Perspect.,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3