Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB1-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis?

Author:

Chen Yuanyuan,Li Ruirui,Chang Qiaocheng,Dong Zhihao,Yang Huanmin,Xu Chuang

Abstract

Aflatoxin B1 (AFB1), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB1 is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification has been proposed. In the present study, to investigate the protective effects and molecular mechanisms of Lactobacillus bulgaricus or Lactobacillus rhamnosus against liver inflammatory responses to AFB1, mice were administered with AFB1 (300 μg/kg) and/or Lactobacillus intragastrically for 8 weeks. AML12 cells were cultured and treated with AFB1, BAY 11-7082 (an NF-κB inhibitor), and different concentrations of L. bulgaricus or L. rhamnosus. The body weight, liver index, histopathological changes, biochemical indices, cytokines, cytotoxicity, and activation of the NF-κB signaling pathway were measured. AFB1 exposure caused changes in liver histopathology and biochemical functions, altered inflammatory response, and activated the NF-κB pathway. Supplementation of L. bulgaricus or L. rhamnosus significantly prevented AFB1-induced liver injury and alleviated histopathological changes and inflammatory response by decreasing NF-κB p65 expression. The results of in vitro experiments revealed that L. rhamnosus evidently protected against AFB1-induced inflammatory response and decreased NF-κB p65 expression when compared with L. bulgaricus. These findings indicated that AFB1 exposure can cause inflammatory response by inducing hepatic injury, and supplementation of L. bulgaricus or L. rhamnosus can produce significant protective effect against AFB1-induced liver damage and inflammatory response by regulating the activation of the NF-κB signaling pathway.

Funder

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3