Abstract
The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab’)2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules.
Funder
Ministerio de Economía, Industria y Competitividad, Gobierno de España
Vicerrectoría de Investigación, Universidad de Costa Rica
Subject
Health, Toxicology and Mutagenesis,Toxicology
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献