Transfer Learning Strategies for Deep Learning-based PHM Algorithms

Author:

Yang FanORCID,Zhang Wenjin,Tao LaifaORCID,Ma Jian

Abstract

As we enter the era of big data, we have to face big data generated by industrial systems that are massive, diverse, high-speed, and variability. In order to effectively deal with big data possessing these characteristics, deep learning technology has been widely used. However, the existing methods require great human involvement that is heavily depend on domain expertise and may thus be non-representative and biased from task to similar task, so for a wide variety of prognostic and health management (PHM) tasks, how to apply the developed deep learning algorithms to similar tasks to reduce the amount of development and data collection costs has become an urgent problem. Based on the idea of transfer learning and the structures of deep learning PHM algorithms, this paper proposes two transfer strategies via transferring different elements of deep learning PHM algorithms, analyzes the possible transfer scenarios in practical application, and proposes transfer strategies applicable in each scenario. At the end of this paper, the deep learning algorithm of bearing fault diagnosis based on convolutional neural networks (CNN) is transferred based on the proposed method, which was carried out under different working conditions and for different objects, respectively. The experiments verify the value and effectiveness of the proposed method and give the best choice of transfer strategy.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Research Fund

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3