The Switching of Trailing Limb Anticipatory Locomotor Adjustments is Uninfluenced by what the Leading Limb Does, but General Time Constraints Remain

Author:

Fiset Félix,McFadyen Bradford J.ORCID

Abstract

Research shows a blend of bilateral influence and independence between leading and trailing limbs during obstacle avoidance. Recent research also shows time constraints in switching leading limb strategies. The present study aimed to understand the ability to switch anticipatory locomotor adjustments (ALAs) in the trailing limb. Ten healthy young adults (24 ± 3 years) were immersed in a virtual environment requiring them to plan and step over an obstacle that, for the trailing limb, could change to a platform, requiring a switch in locomotor strategies to become a leading limb to step onto a new surface. Such perturbations were provoked at either late planning or early execution of the initial trailing limb obstacle avoidance. Sagittal plane trailing limb kinematics, joint kinetics and energetics were measured along with electromyographic activity of key lower limb muscles. Repeated measures ANOVAs compared dependent variables across conditions. To adjust to the new environment, knee flexor power around toe-off decreased (p < 0.001) and hip flexor power increased (p < 0.001) for late planning phase perturbations, while there was only an increase in mid-swing hip flexor power (p < 0.05) during perturbations at execution. Findings showed no influence of the leading limb function on the ability to switch trailing limb ALAs during late planning. However, the trailing limb was also constrained for modifying ALAs once execution began, but on-going limb control strategies could be exploited in a reactive mode.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3