Efficient Melody Extraction Based on Extreme Learning Machine

Author:

Zhang Weiwei,Zhang Qiaoling,Bi Sheng,Fang Shaojun,Dai Jinliang

Abstract

Melody extraction is an important task in music information retrieval community and it is unresolved due to the complex nature of real-world recordings. In this paper, the melody extraction problem is addressed in the extreme learning machine (ELM) framework. More specifically, the input musical signal is first pre-processed to mimic the human auditory system. The music features are then constructed by constant-Q transform (CQT), and the concentration strategy is introduced to make use of contextual information. Afterwards, the rough melody pitches are determined by ELM network, according to its pre-trained parameters. Finally, the rough melody pitches are fine-tuned by the spectral peaks around the frame-wise rough pitches. The proposed method can extract melody from polyphonic music efficiently and effectively, where pitch estimation and voicing detection are conducted jointly. Some experiments have been conducted based on three publicly available datasets. The experimental results reveal that the proposed method achieves higher overall accuracies with very fast speed.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3