On the Impact of the Rules on Autonomous Drive Learning

Author:

Talamini Jacopo,Bartoli Alberto,De Lorenzo Andrea De,Medvet EricORCID

Abstract

Autonomous vehicles raise many ethical and moral issues that are not easy to deal with and that, if not addressed correctly, might be an obstacle to the advent of such a technological revolution. These issues are critical because autonomous vehicles will interact with human road users in new ways and current traffic rules might not be suitable for the resulting environment. We consider the problem of learning optimal behavior for autonomous vehicles using Reinforcement Learning in a simple road graph environment. In particular, we investigate the impact of traffic rules on the learned behaviors and consider a scenario where drivers are punished when they are not compliant with the rules, i.e., a scenario in which violation of traffic rules cannot be fully prevented. We performed an extensive experimental campaign, in a simulated environment, in which drivers were trained with and without rules, and assessed the learned behaviors in terms of efficiency and safety. The results show that drivers trained with rules enforcement are willing to reduce their efficiency in exchange for being compliant to the rules, thus leading to higher overall safety.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3