Non-Rotationally Symmetric Field Mapping for Back-Scanned Step/Stare Imaging System

Author:

Fu Qiang,Zhang Xin,Zhang Jianping,Shi Guangwei,Zhao Shangnan,Liu Mingxin

Abstract

Step/stare imaging with focal plane arrays (FPAs) has become the main approach to achieve wide area coverage and high resolution imaging for long range targets. A fast steering mirror (FSM) is usually utilized to provide back-scanned motion to compensate for the image motion. However, the traditional optical design can just hold one field point relatively stable, typically the central or on-axis field point, on the FPA during back-scanning; all other field points may wander during the exposure due to imaging distortion characteristics of the optical system, which reduces the signal to noise ratio (SNR) of the target. Aiming toward this problem, this paper proposes a non-rotationally symmetric field mapping method for the back-scanned step/stare imaging system, which can make all field points stable on the FPA during back-scanning. First of all, the mathematical model of non-rotationally symmetric field mapping between object space and image space is established. Then, a back-scanned step/stare imaging system based on the model is designed, in which this non-rotationally symmetric mapping can be implemented with an afocal telescope including freeform lenses. Freeform lenses can produce an anamorphic aberration to adjust distortion characteristics of the optical system to control image wander on an FPA. Furthermore, the simulations verify the effectiveness of the method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3