Cell-Laden Thermosensitive Chitosan Hydrogel Bioinks for 3D Bioprinting Applications

Author:

Ku Jongbeom,Seonwoo Hoon,Park SangbaeORCID,Jang Kyoung-Je,Lee Juo,Lee Myungchul,Lim Jae Woon,Kim Jangho,Chung Jong HoonORCID

Abstract

Three-dimensional (3D) bioprinting is a technology used to deposit cell-laden biomaterials for the construction of complex tissues. Thermosensitive hydrogels are physically cross-linked by non-covalent interaction without using crosslinkers, facilitating low cytotoxicity and cell viability. Chitosan, which is a non-toxic, biocompatible and biodegradable polysaccharide, can be used as a thermosensitive hydrogel. Therefore, chitosan hydrogel could be of potential use as a 3D bioprinting ink. The purpose of this study was to develop and compare the effectivity of different bioinks based on chitosan hydrogels for 3D bioprinting. The solvent type did not affect the gel shape and gelation time, whereas acetic acid exhibited better biocompatibility compared to lactic and hydrochloric acids. The nature of the gelling agent was found to have a stronger influence on these characteristics than that of the solvent. The NaHCO3 moiety exhibited a higher growth rate of the storage modulus (G′) and a more irregular porous structure than that of the β-glycerophosphate (β-GP) and K2HPO4 groups. Cell viability, and live and dead assays, showed that the NaHCO3 group was more efficient for cell adhesion. The type of gelling agent did not lead to appreciable differences in cell-laden constructs. The NaHCO3 group was more amenable to bioprinting, compared to the β-GP and K2HPO4 groups. The chitosan hydrogel bioinks could, therefore, be good candidates for 3D bioprinting and would pave the way for patient-specific regenerative medicines.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3