Deep Learning Architecture for Collaborative Filtering Recommender Systems

Author:

Bobadilla JesusORCID,Alonso SantiagoORCID,Hernando Antonio

Abstract

This paper provides an innovative deep learning architecture to improve collaborative filtering results in recommender systems. It exploits the potential of the reliability concept to raise predictions and recommendations quality by incorporating prediction errors (reliabilities) in the deep learning layers. The underlying idea is to recommend highly predicted items that also have been found as reliable ones. We use the deep learning architecture to extract the existing non-linear relations between predictions, reliabilities, and accurate recommendations. The proposed architecture consists of three related stages, providing three stacked abstraction levels: (a) real prediction errors, (b) predicted errors (reliabilities), and (c) predicted ratings (predictions). In turn, each abstraction level requires a learning process: (a) Matrix Factorization from ratings, (b) Multilayer Neural Network fed with real prediction errors and hidden factors, and (c) Multilayer Neural Network fed with reliabilities and hidden factors. A complete set of experiments has been run involving three representative and open datasets and a state-of-the-art baseline. The results show strong prediction improvements and also important recommendation improvements, particularly for the recall quality measure.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Based Personalized Stock Recommender System;Communications in Computer and Information Science;2023-11-26

2. Intelligent learning application based on optical character recognition and personalized recommendation algorithms;Sixth International Conference on Computer Information Science and Application Technology (CISAT 2023);2023-10-11

3. Enriching Aspect-Based Recommendation System using Social Relation-Item Interaction;J INF SCI ENG;2023

4. ICCVAE: Item Concept Causal Variational Auto-Encoder for top-n recommendation;2023 8th International Conference on Intelligent Computing and Signal Processing (ICSP);2023-04-21

5. Deep Biased Matrix Factorization for Student Performance Prediction;EAI Endorsed Transactions on Context-aware Systems and Applications;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3