UVI Image Segmentation of Auroral Oval: Dual Level Set and Convolutional Neural Network Based Approach

Author:

Tian ChenjingORCID,Du Huadong,Yang Pinglv,Zhou Zeming,Weng Libin

Abstract

The auroral ovals around the Earth’s magnetic poles are produced by the collisions between energetic particles precipitating from solar wind and atoms or molecules in the upper atmosphere. The morphology of auroral oval acts as an important mirror reflecting the solar wind-magnetosphere-ionosphere coupling process and its intrinsic mechanism. However, the classical level set based segmentation methods often fail to extract an accurate auroral oval from the ultraviolet imager (UVI) image with intensity inhomogeneity. The existing methods designed specifically for auroral oval extraction are extremely sensitive to the contour initializations. In this paper, a novel deep feature-based adaptive level set model (DFALS) is proposed to tackle these issues. First, we extract the deep feature from the UVI image with the newly designed convolutional neural network (CNN). Second, with the deep feature, the global energy term and the adaptive time-step are constructed and incorporated into the local information based dual level set auroral oval segmentation method (LIDLSM). Third, we extract the contour of the auroral oval through the minimization of the proposed energy functional. The experiments on the UVI image data set validate the strong robustness of DFALS to different contour initializations. In addition, with the help of deep feature-based global energy term, the proposed method also obtains higher segmentation accuracy in comparison with the state-of-the-art level set based methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Auroral Boundary Determination Algorithm With Deep Feature and Dual Level Set;Journal of Geophysical Research: Space Physics;2020-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3