Augmented EMTCNN: A Fast and Accurate Facial Landmark Detection Network

Author:

Kim Hyeon-Woo,Kim Hyung-Joon,Rho SeungminORCID,Hwang EenjunORCID

Abstract

Facial landmarks represent prominent feature points on the face that can be used as anchor points in many face-related tasks. So far, a lot of research has been done with the aim of achieving efficient extraction of landmarks from facial images. Employing a large number of feature points for landmark detection and tracking usually requires excessive processing time. On the contrary, relying on too few feature points cannot accurately represent diverse landmark properties, such as shape. To extract the 68 most popular facial landmark points efficiently, in our previous study, we proposed a model called EMTCNN that extended the multi-task cascaded convolutional neural network for real-time face landmark detection. To improve the detection accuracy, in this study, we augment the EMTCNN model by using two convolution techniques—dilated convolution and CoordConv. The former makes it possible to increase the filter size without a significant increase in computation time. The latter enables the spatial coordinate information of landmarks to be reflected in the model. We demonstrate that our model can improve the detection accuracy while maintaining the processing speed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey on disguise face recognition;Journal of the Chinese Institute of Engineers;2024-05-06

2. Local eye-net: An attention based deep learning architecture for localization of eyes;Expert Systems with Applications;2024-04

3. Facial Nerve Disorder Rehabilitation via Generative Adversarial Network;Communications in Computer and Information Science;2024

4. Echoes in Silence: A Technological Leap for Pakistan Sign Language Translation and Recognition;2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET);2023-12-04

5. A robust kinship verification scheme using face age transformation;Computer Vision and Image Understanding;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3