Abstract
The increasing popularity of pike in angling and fish farming has created a need to increase pike production. However, intensive pike farming is subject to limitations due to diseases and pathogens. Sodium chloride (NaCl) could be a good alternative to chemotherapeutics, especially for protecting the fish against pathogens and parasites at early life stages. However, the impact of high salinity on the symbiotic bacteria inhabiting freshwater fish is still unclear. Therefore, our objective was to analyze the gut microbiome to find possible changes caused by salinity. In this study, the influence of 3‰ and 7‰ salinity on pike fry was investigated. High-throughput 16S rRNA gene amplicon sequencing was used to profile the gut microbiome of the fish. It was found that salinity had a statistically significant influence on pike fry mortality. Mortality was highest in the 7‰ salinity group and lowest in the 3‰ group. Microbiological analysis indicated that Proteobacteria and Actinobacteria predominated in the pike gut microbiome in all examined groups, followed by lower percentages of Bacteroidetes and Firmicutes. There were no statistically significant differences in the percent abundance of bacterial taxa between the control group and groups with a higher salinity. Our results suggest that salinity influences the gut microbiome structure in pike fry, and that 3‰ salinity may be a good solution for culturing pike at this stage in their development.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献