Abstract
Ultraviolet A (UVA)-induced detrimental effects in the skin, also known as photoaging, are mediated with several pathways including oxidative stress generation and extracellular matrix (ECM) degradation. UVA irradiation results in excessive production of matrix metalloproteinases (MMPs), enzymes responsible for the degradation of ECM components such as collagen. In this study, the protective effects of (2′S)-columbianetin against UVA-induced changes in matrix metalloproteinase-1 (MMP-1) and collagen production were investigated in human dermal fibroblasts (HDFs). The (2′S)-columbianetin was isolated from Corydalis heterocarpa. UVA exposure increased MMP-1 release from HDFs and diminished the release of type I pro-collagen. Treatment with (2′S)-columbianetin reversed these effects of UVA exposure. The (2′S)-columbianetin treatment also suppressed the intracellular expression of MMP-1 and increased type I pro-collagen expression. UVA exposure elevated the activation of p38, c-Jun-amino-terminal kinase (JNK) and extracellular signal-related kinase (ERK) as the mechanism to stimulate MMP-1 production. The (2′S)-columbianetin suppressed the phosphorylation of JNK and ERK. The (2′S)-columbianetin was also stimulated collagen production via TGFβ signaling cascade, relieving UVA-induced suppression of Smad2/3 phosphorylation and translocation. In conclusion, (2′S)-columbianetin was suggested to be a potential cosmeceutical lead compound with antiphotoaging properties against UVA-induced collagen degradation.
Funder
Ministry of Oceans and Fisheries
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献